4.6 Article

Canonical and kinetic forms of the electromagnetic momentum in an ad hoc quantization scheme for a dispersive dielectric -: art. no. 053826

期刊

PHYSICAL REVIEW A
卷 70, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.70.053826

关键词

-

向作者/读者索取更多资源

An ad hoc quantization scheme for the electromagnetic field in a weakly dispersive, transparent dielectric leads to the definition of canonical and kinetic forms for the momentum of the electromagnetic field in a dispersive medium. The canonical momentum is uniquely defined as the operator that generates spatial translations in a uniform medium, but the quantization scheme suggests two possible choices for the kinetic momentum operator, corresponding to the Abraham or the Minkowski momentum in classical electrodynamics. Another implication of this procedure is that a wave packet containing a single dressed photon travels at the group velocity through the medium. The physical significance of the canonical momentum has already been established by considerations of energy and momentum conservation in the atomic recoil due to spontaneous emission, the Cerenkov effect, the Doppler effect, and phase matching in nonlinear optical processes. In addition, the data of the Jones and Leslie radiation pressure experiment is consistent with the assignment of one hk unit of canonical momentum to each dressed photon. By contrast, experiments in which the dielectric is rigidly accelerated by unbalanced electromagnetic forces require the use of the Abraham momentum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据