4.2 Article

Role of the temperature distribution on the PN junction behaviour in the electro-thermal simulation

出版社

WILEY
DOI: 10.1002/jnm.556

关键词

devices; modelling; electrothermal; bond graphs

向作者/读者索取更多资源

Electro-thermal simulations of a PIN-diode based on the finite-element method, show a non-uniform temperature distribution inside the device during switching transients. Hence, the implicit assumption of a uniform temperature distribution when coupling an analytical electrical model and a thermal model yields inaccurate electro-thermal behaviour of the PIN-diode so far. The idea of including non-uniform temperature distribution into power semiconductor device models is not new, as accurate electro-thermal simulations are required for designing compact power electronic systems (as IC or MCM). Instead of using a one-dimensional finite difference or element method, the bond graphs and the hydrodynamic method are utilized to build an electro-thermal model of the PIN-diode. The results obtained by this original technique are compared with those obtained by a commercial finite-element simulator. The results are similar but the computation effort of the proposed technique is a fraction of that required by finite-element simulators. Moreover, the proposed technique may be applied easily to other power semiconductor devices. Copyright (C) 2004 John Wiley Sons. Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据