4.7 Article

Fractional diffusion modeling of ion channel gating -: art. no. 051915

期刊

PHYSICAL REVIEW E
卷 70, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.70.051915

关键词

-

向作者/读者索取更多资源

An anomalous diffusion model for ion channel gating is put forward. This scheme is able to describe nonexponential, power-law-like distributions of residence time intervals in several types of ion channels. Our method presents a generalization of the discrete diffusion model by Millhauser, Salpeter, and Oswald [Proc. Nail. Acad. Sci. U.S.A. 85, 1503 (1988)] to the case of a continuous, anomalous slow conformational diffusion. The corresponding generalization is derived from a continuous-time random walk composed of nearest-neighbor jumps which in the scaling limit results in a fractional diffusion equation. The studied model contains three parameters only: the mean residence time, a characteristic time of conformational diffusion, and the index of subdiffusion. A tractable analytical expression for the characteristic function of the residence time distribution is obtained. In the limiting case of normal diffusion, our prior findings [Proc. Nail. Acad. Sci. U.S.A. 99, 3552 (2002)] are reproduced. Depending on the chosen parameters, the fractional diffusion model exhibits a very rich behavior of the residence time distribution with different characteristic time regimes. Moreover, the corresponding autocorrelation function of conductance fluctuations displays nontrivial power law features. Our theoretical model is in good agreement with experimental data for large conductance potassium ion channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据