4.2 Article Proceedings Paper

Classical complexity and quantum entanglement

期刊

JOURNAL OF COMPUTER AND SYSTEM SCIENCES
卷 69, 期 3, 页码 448-484

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcss.2004.06.003

关键词

entanglement; complexity; determinant

向作者/读者索取更多资源

Generalizing a decision problem for bipartite perfect matching, Edmonds (J. Res. Natl. Bur. Standards 718(4) (1967) 242) introduced the problem (now known as the Edmonds Problem) of deciding if a given linear subspace of M (N) contains a non-singular matrix, where M (N) stands for the linear space of complex N x N matrices. This problem led to many fundamental developments in matroid theory, etc. Classical matching theory can be defined in terms of matrices with non-negative entries. The notion of Positive operator, central in Quantum Theory, is a natural generalization of matrices with non-negative entries. (Here operator refers to maps from matrices to matrices.) First, we reformulate the Edmonds Problem in terms of completely positive operators, or equivalently, in terms of bipartite density matrices. It turns out that one of the most important cases when Edmonds' problem can be solved in polynomial deterministic time, i.e. an intersection of two geometric matroids, corresponds to unentangled (aka separable) bipartite density matrices. We introduce a very general class (or promise) of linear subspaces of M(N) on which there exists a polynomial deterministic time algorithm to solve Edmonds' problem. The algorithm is a thoroughgoing generalization of algorithms in Linial, Samorodnitsky and Wigderson, Proceedings of the 30th ACM Symposium on Theory of Computing, ACM, New York, 1998; Gurvits and Yianilos, and its analysis benefits from an operator analog of permanents, so-called Quantum Permanents. Finally, we prove that the weak membership problem for the convex set of separable normalized bipartite density matrices is NP-HARD. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据