4.2 Article

Microballoon wall thickness effects on properties of syntactic foams

期刊

JOURNAL OF CELLULAR PLASTICS
卷 40, 期 6, 页码 461-480

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021955X04048421

关键词

composites; mechanical properties; strength; syntactic foam; microballoon

向作者/读者索取更多资源

A novel approach for changing the density of syntactic foams, while keeping the microballoon (hollow particles) volume fraction constant, is adopted in this work. This is achieved by selecting microballoons of the same size but with different wall thickness. Five types of microballoons are selected to fabricate syntactic foams. All the types of microballoons have about 40 mum mean particle sizes, but different wall thicknesses. This approach allows to maintain the same volume fractions of constituents and interfacial area while changing the density of syntactic foams. The fabricated syntactic foams are tested for their compressive properties in accordance to the ASTM D 695-96 standard. The results of the experimental investigation show a strong dependence of the compressive properties and the fracture characteristics of syntactic foams on the microballoon wall thickness. Shear cracking followed by cracking under secondary tensile stresses has been observed as the fracture mode. The present approach is found to be more effective than changing the microballoon volume fraction to change the syntactic foam density as it considerably increases the strength to the weight ratio.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据