4.6 Article

Quantum capacitance in nanoscale device modeling

期刊

JOURNAL OF APPLIED PHYSICS
卷 96, 期 9, 页码 5180-5184

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1803614

关键词

-

向作者/读者索取更多资源

Expressions for the quantum capacitance are derived, and regimes are discussed in which this concept may be useful in modeling electronic devices. The degree of quantization is discussed for one- and two-dimensional systems, and it is found that two-dimensional (2D) metals and one-dimensional (1D) metallic carbon nanotubes have a truly quantized capacitance over a restricted bias range. For both 1D and 2D semiconductors, a continuous description of the capacitance is necessary. The particular case of carbon nanotube field-effect transistors (CNFETs) is discussed in the context of one-dimensional systems. The bias regime in which the quantum capacitance may be neglected when computing the energy band diagram, in order to assist in the development of compact CNFET models, is found to correspond only to the trivial case where there is essentially no charge, and a solution to Laplace's equation is sufficient for determining a CNFET's energy band diagram. For fully turned-on devices, then, models must include this capacitance in order to properly capture the device behavior. Finally, the relationship between the transconductance of a CNFET and this capacitance is revealed. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据