4.1 Article

Pharmacologic therapy for stop mutations: how much CFTR activity is enough?

期刊

CURRENT OPINION IN PULMONARY MEDICINE
卷 10, 期 6, 页码 547-552

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.mcp.0000141247.22078.46

关键词

aminoglycoside; cystic fibrosis; stop mutations; gentamicin treatment; CFTR

向作者/读者索取更多资源

Purpose of review The purpose of this review is to summarize the recent approaches using mutation-specific therapy to correct the genetic defect according to the molecular mechanism by which the mutation causes the defects in cystic fibrosis transmembrane conductance regulator (CFTR). Premature stop mutations (class I mutations) account for 5 to 10% of the total mutant alleles in cystic fibrosis patients, and in certain subpopulations the incidence is much higher. Recent findings The aminoglycoside antibiotics can suppress premature termination codons by permitting translation to continue to the normal termination of the transcript. The susceptibility to suppression by aminoglycosides depends on the stop codon itself and on the sequence context surrounding it. In vitro studies in cell lines expressing stop mutations and in mice have shown that aminoglycosides caused a dose-dependent increase in CFTR expression and restored functional CFTR to the apical membrane. Clinical studies also provided evidence that the aminoglycoside gentamicin can suppress these CFTR premature stop mutations in affected patients. A recent double-blind, placebo-controlled, crossover study has demonstrated restoration of CFTR function by topical application of gentamicin to the nasal epithelium of cystic fibrosis patients carrying stop mutations. In 21% of the patients there was a complete normalization of all the electrophysiologic abnormalities caused by the CFTR defect, and in 68% there was restoration of either chloride or sodium transport. Furthermore, immunolhistochemical staining to the C-terminal part of the CFTR was demonstrated via peripheral staining for CFTR in scraped nasal epithelial cells of patients carrying stop mutations. Inconsistent results were reported regarding the required level of corrected CFTR that has to be reached to achieve normal function. Achieving CFTR activity of 10 to 35% might be needed to prevent significant pulmonary morbidity. Summary It is as yet unknown how much corrected mutant CFTR must reach the apical membrane to induce a clinically relevant beneficial effect. The future goal is to maximize the effect of stop-codon supressors on CFTR while minimizing side effects, but further studies must be performed to find a safer compound that may be administered in small children from the time of diagnosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据