4.4 Article

Deflagration to detonation transition processes by turbulence-generating obstacles in pulse detonation engines

期刊

JOURNAL OF PROPULSION AND POWER
卷 20, 期 6, 页码 1026-1036

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.11042

关键词

-

向作者/读者索取更多资源

The results from a series of detonation experiments conducted to characterize the deflagration-to-detonation transition (DDT) process for ethylene-air mixtures in a 44-mm-square, 1.65-m-long tube are described. Experiments were conducted for both single-shot detonations involving quiescent mixtures as well as multicycle detonations involving dynamic fill. For the experiments, high-frequency pressure and flame emission measurements were made to obtain the compression wave and flame speeds, respectively. In addition, schlieren and hydroxyl-radical/planarlaser-induced-fluorescence (OH-PLIF) imaging were applied to investigate the interactions between the shock-wave and combustion phenomena during both deflagration and detonation. For ethylene-air mixtures, strategically placed obstacles were necessary to achieve DDT. The effect of the presence of obstacles on flame acceleration was systematically investigated by changing the obstacle configuration. The parametric study of obstacle blockage ratio, spacing between obstacles, and length of the obstacle configuration indicated that for successful detonations the obstacle needs to accelerate the flame to a minimum flame speed of roughly half the Chapman-jouguet detonation velocity. Differences in the flame and compression wave velocities demonstrated the development of a coupled feedback mechanism as the wave propagated along the tube. A series of simultaneous schlieren and OH-PLIF images showed that the obstacle plays a major role in generating small/large-scale turbulence that enhances flame acceleration. Localized explosions of pockets of unburned mixture further enhanced the shock-wave strength to continuously increase the flame speed. The results of this experimental study support the importance of obstacles as a means to enhance DDT and provide a potential solution for practical pulse-detonation-engine applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据