4.7 Article

Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 65, 期 6, 页码 734-738

出版社

SPRINGER
DOI: 10.1007/s00253-004-1612-8

关键词

-

向作者/读者索取更多资源

The first two steps in xylose metabolism are catalyzed by NAD(P)H-dependent xylose reductase (XR) (EC 1.1.1.21) and NAD(P)-dependent xylitol dehydrogenase (XDH) (EC 1.1.1.9), which lead to xylose --> xylitol --> xylulose conversion. Xylitol has high commercial value, due to its sweetening and anticariogenic properties, as well as several clinical applications. The acid hydrolysis of sugarcane bagasse allows the separation of a xylose-rich hemicellulosic fraction that can be used as a substrate for Candida guilliermondii to produce xylitol. However, the hydrolysate contains acetic acid, an inhibitor of microbial metabolism. In this study, the effect of acetic acid on the activities of XR and XDH and on xylitol formation by C. guilliermondii were studied. For this purpose, fermentations were carried out in bagasse hydrolysate and in synthetic medium. The activities of XR and XDH were higher in the medium containing acetic acid than in control medium. Moreover, none of the fermentative parameters were significantly altered during cell culture. It was concluded that acetic acid does not interfere with xylitol formation since the increase in XR activity is proportional to XDH activity, leading to a greater production of xylitol and its subsequent conversion to xylulose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据