4.5 Article

Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in mouse

期刊

HUMAN MOLECULAR GENETICS
卷 13, 期 21, 页码 2709-2723

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddh281

关键词

-

向作者/读者索取更多资源

The sphingolipid activator proteins (saposins A, B, C and D) are small homologous glycoproteins that are encoded by a single gene in tandem within a large precursor protein (prosaposin) and are required for in vivo degradation of some sphingolipids with relatively short carbohydrate chains. Human patients with prosaposin or specific saposin B or C deficiency are known, and prosaposin- and saposin A-deficient mouse lines have been generated. Experimental evidence suggests that saposin D may be a lysosomal acid ceramidase activator. However, no specific saposin D deficiency state is known in any mammalian species. We have generated a specific saposin D-/- mouse by introducing a mutation (C509S) into the saposin D domain of the mouse prosaposin gene. Saposin D-/- mice developed progressive polyuria at around 2 months and ataxia at around 4 months. Pathologically, the kidney of saposin D-/- mice showed renal tubular degeneration and eventual hydronephrosis. In the nervous system, progressive and selective loss of the cerebellar Purkinje cells in a striped pattern was conspicuous, and almost all Purkinje cells disappeared by 12 months. Biochemically, ceramides, particularly those containing hydroxy fatty acids accumulated in the kidney and the brain, most prominently in the cerebellum. These results not only indicate the role of saposin D in in vivo ceramide metabolism, but also suggest possible cytotoxicity of ceramide underlying the cerebellar Purkinje cell and renal tubular cell degeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据