4.7 Article

Analysis of the geometric and radiative characteristics of hydrocarbon pool fires

期刊

COMBUSTION AND FLAME
卷 139, 期 3, 页码 263-277

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2004.09.001

关键词

pool fire; burning rate; flame length; thermal radiation; infrared camera; emissive power

向作者/读者索取更多资源

The radiation intensity at a given distance depends mainly on the radiative power and the flame's size and shape. Considerable literature describing both experimental and theoretical studies of thermal radiation from flames is available. Even so, predicting the radiant power of large flames is still subject to considerable uncertainty, because some parameters associated with large turbulent diffusion flames cannot be determined accurately for a given fire. A series of outdoor large pool-fire experiments were performed using gasoline and diesel fuels lying above a layer of water. Five concentric circular pools made of reinforced concrete (1.5, 3, 4, 5, and 6 m in diameter) were used. The experiments were filmed with at least two video cameras registering visible light (VHS) and a thermographic camera (IR). In this study, thermographic images were used to determine the flames' distribution of emissive power, the mean emissive power, and the flame's irradiance. The contribution of each part of the flame to the total radiated energy was analyzed. A method is presented combining the IR images and the visible images; it offers further insight into the relationship between the heat emitted by the luminous part and the obscured, nonluminous, part of the flame. (C) 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据