4.7 Article

Many-body theory of chemotactic cell-cell interactions

期刊

PHYSICAL REVIEW E
卷 70, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.70.051916

关键词

-

向作者/读者索取更多资源

We consider an individual-based stochastic model of cell movement mediated by chemical signaling fields. This model is formulated using Langevin dynamics, which allows an analytic study using methods from statistical and many-body physics. In particular we construct a diagrammatic framework within which to study cell-cell interactions. In the mean-field limit, where statistical correlations between cells are neglected, we recover the deterministic Keller-Segel equations. Within exact perturbation theory in the chemotactic coupling epsilon, statistical correlations are non-negligible at large times and lead to a renormalization of the cell diffusion coefficient D-R-an effect that is absent at mean-field level. An alternative closure scheme, based on the necklace approximation, probes the strong coupling behavior of the system and predicts that D-R is renormalized to zero at a critical value of epsilon, indicating self-localization of the cell. Stochastic simulations of the model give very satisfactory agreement with the perturbative result. At higher values of the coupling simulations indicate that D-R similar to epsilon(-2), a result at odds with the necklace approximation. We briefly discuss an extension of our model, which incorporates the effects of short-range interactions such as cell-cell adhesion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据