4.8 Article

Poly(D,L lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells

期刊

BIOMATERIALS
卷 25, 期 26, 页码 5763-5771

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.01.027

关键词

microsphere; stem cell; poly(D,L-lactic-co-glycolic acid); nerve regeneration; transplantation; drug delivery

向作者/读者索取更多资源

The pluripotent nature and proliferative capacity of embryonic stem cells makes them an attractive cell source for tissue engineering and regeneration. In our study we investigated the use of poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres as biodegradable microcarriers of pluripotent cells and as delivery systems of bioactive factors, which influence cell differentiation. The pluripotent P19 embryonal carcinoma cell line was used as a model to study cell attachment, growth and differentiation of pluripotent stem cells on PLGA microspheres. Retinoic acid (RA) was encapsulated in the PLGA microcarriers to influence cell differentiation-m ore specifically, to induce P19 cell differentiation into neurons. The results revealed that P19 cells attach and grow on the surface of the RA loaded PLGA microspheres. Moreover, the RA loaded PLGA microspheres were shown to be as effective as soluble RA at inducing P19 cell differentiation into neurons. Hence, the results of these ex vivo studies clearly demonstrate the capacity of PLGA microspheres to serve a dual role as both delivery systems of bioactive factors and as scaffolds for pluripotent cells. More importantly, our study demonstrates the potential use of PLGA microspheres as transplantation matrices of pluripotent stem cells for tissue engineering and regeneration. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据