4.6 Article

Quantum state targeting

期刊

PHYSICAL REVIEW A
卷 70, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.70.052306

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [GR/S51226/01] Funding Source: researchfish

向作者/读者索取更多资源

We introduce a primitive for quantum cryptography that we term state targeting. We show that increasing one's probability of success in this task above a minimum amount implies an unavoidable increase in the probability of a particular kind of failure. This is analogous to the unavoidable disturbance to a quantum state that results from gaining information about its identity, and can be shown to be a purely quantum effect. We solve various optimization problems for state targeting that are useful for the security analysis of two-party cryptographic tasks implemented between remote antagonistic parties. Although we focus on weak coin flipping, the results are significant for other two-party protocols, such as strong coin flipping, partially binding and concealing bit commitment, and bit escrow. Furthermore, the results have significance not only for the traditional notion of security in cryptography, that of restricting a cheater's ability to bias the outcome of the protocol, but also for a different notion of security that arises only in the quantum context, that of cheat sensitivity. Finally, our analysis leads to some interesting secondary results, namely, a generalization of Uhlmann's theorem and an operational interpretation of the fidelity between two mixed states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据