4.4 Review

Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi

期刊

EUROPEAN JOURNAL OF PLANT PATHOLOGY
卷 110, 期 9, 页码 893-908

出版社

SPRINGER
DOI: 10.1007/s10658-004-4842-9

关键词

detection; gene expression; molecular beacons; scorpion PCR; SYBR green I; TaqMan

向作者/读者索取更多资源

Real-time PCR technologies open increasing opportunities to detect and study phytopathogenic and antagonistic fungi. They combine the sensitivity of conventional PCR with the generation of a specific fluorescent signal providing real-time analysis of the reaction kinetics and allowing quanti. cation of specific DNA targets. Four main chemistries are currently used for the application of this technique in plant pathology. These chemistries can be grouped into amplicon sequence non-specific (SYBR Green I) and sequence specific (TaqMan, Molecular beacons, and Scorpion-PCR) methods. Amplicon sequence non-specific methods are based on the use of a dye that emits fluorescent light when intercalated into double-stranded DNA. Amplicon sequence specific methods are based on the use of oligonucleotide probes labelled with a donor fluorophore and an acceptor dye (quencher). The fluorescent signal eliminates the requirement for post-amplification processing steps, such as gel electrophoresis and ethidium bromide staining. This significantly reduces time and labour required for the analysis and greatly increases the throughput of PCR testing as an automated diagnostic system, making it suitable for large-scale analyses. Furthermore, the use of different fluorescent dyes facilitates the detection of several target microrganisms in a single reaction (multiplex-PCR). Real-time PCR makes possible an accurate, reliable and high throughput quanti. cation of target fungal DNA in various environmental samples, including hosts tissues, soil, water and air, thus opening new research opportunities for the study of diagnosis, inoculum threshold levels, epidemiology and host-pathogen interactions. Moreover, the quanti. cation of specific mRNA transcription by real-time PCR is being increasingly applied to the study of changes in gene expression in response to phytopathogenic and antagonistic fungi.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据