4.5 Article

Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data

期刊

JOURNAL OF MATERIALS RESEARCH
卷 19, 期 11, 页码 3172-3180

出版社

MATERIALS RESEARCH SOCIETY
DOI: 10.1557/JMR.2004.0410

关键词

-

向作者/读者索取更多资源

By using molecular dynamics simulations, we have accurately determined the true contact area during plastic indentation of materials under an applied in-plane stress. We found that the mean pressure calculated from the true contact area varied slightly with applied pre-stress with higher values in compression than in tension and that the modulus calculated from the true contact area is essentially independent of the press-stress level in the substrate. These findings are largely consistent with the findings of Tsui, Pharr, and Oliver. On the other hand, if the contact area is estimated from approximate formulae, the contact area is underestimated and shows a strong dependence on the pre-stress level. When it is used to determine mean pressure and modulus, the empirically determined area leads to large errors. Our simulations demonstrate that this phenomenon, first reported for macroscale hardness measurements dating back to 1932, also exists at the nanometer-scale contact areas, apparently scaling over 10 orders of magnitude in contact area, from similar tomm(2) to similar to100 nm(2) nm2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据