4.5 Article Proceedings Paper

Wave-equation migration velocity analysis. I. Theory

期刊

GEOPHYSICAL PROSPECTING
卷 52, 期 6, 页码 593-606

出版社

WILEY
DOI: 10.1111/j.1365-2478.2004.00447.x

关键词

-

向作者/读者索取更多资源

We present a migration velocity analysis (MVA) method based on wavefield extrapolation. Similarly to conventional MVA, our method aims at iteratively improving the quality of the migrated image, as measured by the flatness of angle-domain common-image gathers (ADCIGs) over the aperture-angle axis. However, instead of inverting the depth errors measured in ADCIGs using ray-based tomography, we invert 'image perturbations' using a linearized wave-equation operator. This operator relates perturbations of the migrated image to perturbations of the migration velocity. We use prestack Stolt residual migration to define the image perturbations that maximize the focusing and flatness of ADCIGs. Our linearized operator relates slowness perturbations to image perturbations, based on a truncation of the Born scattering series to the first-order term. To avoid divergence of the inversion procedure when the velocity perturbations are too large for Born linearization of the wave equation, we do not invert directly the image perturbations obtained by residual migration, but a linearized version of the image perturbations. The linearized image perturbations are computed by a linearized prestack residual migration operator applied to the background image. We use numerical examples to illustrate how the backprojection of the linearized image perturbations, i.e. the gradient of our objective function, is well behaved, even in cases when backprojection of the original image perturbations would mislead the inversion and take it in the wrong direction. We demonstrate with simple synthetic examples that our method converges even when the initial velocity model is far from correct. In a companion paper, we illustrate the full potential of our method for estimating velocity anomalies under complex salt bodies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据