4.8 Article

From Si source gas directly to positioned, electrically contacted Si nanowires: The self-assembling grow-in-place approach

向作者/读者索取更多资源

Our grow-in-place approach to Si nanowire devices uses a silicon precursor gas (e.g., SiH(4)) to directly produce self-assembled, electrically contacted, crystalline Si nanowires without any intervening silicon material formation or collection/positioning steps. The approach uses the vapor-liquid-solid (VLS) growth mechanism and lithographically fabricated, permanent, nanochannel growth templates to control the size, shape, orientation, and positioning of the nanowires and ribbons. These horizontal templates are an integral component of the final devices and provide contacts, interconnects, and passivation/encapsulation. The approach results in self-assembly of the Si nanowires (SiNWs) and nanoribbons (SiNRs) into interconnected devices without any pick-and-place or printing steps, thereby avoiding the most serious problems encountered in process control, assembly, contacting, and integration of SiNWs and SiNRs for IC applications. As an initial demonstration of our approach, we have fabricated SiNW and SiNR resistors with built-in electrical contacts and encapsulation and report conductivity measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据