4.6 Article

Ultrafast relaxation dynamics of hot optical phonons in graphene

期刊

APPLIED PHYSICS LETTERS
卷 96, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3291615

关键词

chemical vapour deposition; epitaxial growth; graphene; high-speed optical techniques; hot carriers; insulating thin films; laser cooling; multilayers; nickel; phonons; silicon compounds

资金

  1. National Science Foundation
  2. DARPA Young Faculty Award
  3. AFOSR [FA9550-07-1-0332]
  4. National Science Foundation [0520404]
  5. Division Of Materials Research
  6. Direct For Mathematical & Physical Scien [0520404] Funding Source: National Science Foundation
  7. Div Of Electrical, Commun & Cyber Sys
  8. Directorate For Engineering [0824209] Funding Source: National Science Foundation

向作者/读者索取更多资源

Using ultrafast optical pump-probe spectroscopy, we study the relaxation dynamics of hot optical phonons in few-layer and multilayer graphene films grown by epitaxy on silicon carbide substrates and by chemical vapor deposition on nickel substrates. In the first few hundred femtoseconds after photoexcitation, the hot carriers lose most of their energy to the generation of hot optical phonons which then present the main bottleneck to subsequent cooling. Optical phonon cooling on short time scales is found to be independent of the graphene growth technique, the number of layers, and the type of the substrate. We find average phonon lifetimes in the 2.5-2.55 ps range. We model the relaxation dynamics of the coupled carrier-phonon system with rate equations and find a good agreement between the experimental data and the theory. The extracted optical phonon lifetimes agree very well with the theory based on anharmonic phonon interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据