4.6 Article

Nuclear spin bath effects in molecular nanomagnets: Direct quantum mechanical simulations

期刊

PHYSICAL REVIEW B
卷 70, 期 17, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.174449

关键词

-

向作者/读者索取更多资源

We investigate the influence of nuclear spins on the electronic spin tunneling in magnetic molecules such as Fe-8, focusing on the role of the spin diffusion in the nuclear spin bath. We simulate the quantum spin dynamics by numerically solving the time-dependent Schrodinger equation for the compound system (the electronic spin plus the bath spins). Our results demonstrate that the effect of the spin bath cannot always be modeled as a randomly varying magnetic field acting on the electronic spin. We consider two dynamical regimes: the spin relaxation in a constant magnetic field, and the spin tunneling in the linearly varying magnetic field passing the avoided level crossing, so-called Landau-Zener-Stuckelberg (LZS) transition. For the first regime, we confirmed that the hole in the magnetization distribution has the width of the hyperfine fields distribution. For the second regime, we found that the transition probability for moderately slow sweeps deviates from the standard LZS prediction, while for the fast sweeps the deviation is negligible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据