4.7 Article

Impaired axonal transport and altered axolemmal permeability occur in distinct populations of damaged axons following traumatic brain injury

期刊

EXPERIMENTAL NEUROLOGY
卷 190, 期 1, 页码 59-69

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2004.05.022

关键词

traumatic axonal injury; diffuse axonal injury; traumatic brain injury; axolemmal permeability; impaired axonal transport; impact acceleration; dextran; rat

向作者/读者索取更多资源

Traumatic axonal injury (TAI) evolves within minutes to hours following traumatic brain injury (TBI). Previous studies have identified axolemmal disruption and impaired axonal transport (AxT) as key mechanisms in the evolution of TAL While initially hypothesized that axolemmal disruption culminates in impaired AxT, previous studies employed single-label methodologies that did not allow for a full determination of the spatial-temporal relationships of these two events. To explore directly the relationship between impaired AxT and altered axolemmal permeability, the current investigation employed 40, 10, and 3 kDa fluorescently conjugated dextrans as markers of axolemmal integrity, with antibodies targeting the anterogradely transported amyloid precursor protein (APP) utilized as a marker of impaired AxT. Rats underwent impact acceleration TBI and were intrathecally administered 40 kDa, 40 + 10 kDa or 40 + 3 kDa fluorescently tagged dextrans, with brains subsequently prepared for APP immunofluorescence. Brainstem corticospinal tracts (CSpT), medial lemnisci (ML), and medial longitudinal fasciculi were examined for evidence of TAL APP and all dextrans consistently localized to distinct classes of TAL Dextrans were noted as early as 5 min following injury within axonal segments demonstrating an irregular/tortuous appearance, and were seen within thin and elongate/vacuolated axons by 30 min-6 h following injury. APP, first noted within swollen axons at 30 min following injury, was found within progressively swollen axons that showed no dextran colocalization within 3 h of injury. However, by 6 h, dextrans colocalized in disconnected axonal bulbs. At this time-point, dextrans also persisted within single-labeled, highly vacuolated/thin, and elongate axons. These studies confirm that axolemmal disruption and impaired AxT occur as distinct non-related events early in the pathogenesis of TAL Further, these studies provide evidence that the process of impaired axonal transport and subsequent axonal disconnection leads to delayed axolemmal instability, rather than proceeding as a consequence of initial axolemmal failure. This finding underscores the need of multiple approaches to fully assess the axonal response to TBI. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据