3.8 Article Proceedings Paper

Production of new titanium alloy for orthopedic implants

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2004.08.011

关键词

titanium alloy; orthopedic implants; porosity

向作者/读者索取更多资源

The beta titanium alloys is one of the most promising groups of the titanium alloys. This fact is due to the good formability, mechanical properties and potential applications; moreover, these alloys present the highest level of mechanical, fatigue and corrosion resistance. The beta titanium alloys present the lowest elastic modulus, an interesting property for orthopedic implants. A alloy recently developed for this application is Ti-35Nb-7Zr-5Ta. In this work, the alloy was produced by powder metallurgy, unique available alternative for obtaining parts with porous structure (until 50% of porosity), that is one important characteristic for the osteointegration. The Ti-35Nb-7Zr-5Ta samples were manufactured by blended elemental method from a sequence of uniaxial and cold isostatic pressing with subsequent densification by sintering among 900 at 1700 degreesC, in vacuum. The objective of this work is the analysis of alloy microstructural evolution from the elemental powders dissolution under the increase of the sintering temperature. The alloy was characterized by scanning electron microscopy, X-ray diffraction and Vickers microhardness measurements. Density was measured by Archimedes method. The results show that a beta-homogeneous microstructure is obtained in the whole sample with the increase of sintering temperature. With the beginning of the beta-stabilizers (Nb and Ta) dissolution, at low gintering temperatures, there is the formation of an intermediary Widmanstatten (alpha+beta) phase. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据