4.8 Article

Use of ferrocenyl surfactants of varying chain lengths to study electron transfer reactions in native montmorillonite clay

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 38, 期 21, 页码 5598-5603

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es030645+

关键词

-

向作者/读者索取更多资源

A series of ferrocenyl surfactants was tested as model compounds to study electron transfer reactions involving structural Fe(III) in clay minerals. The surfactants contain trimethylammonium headgroups, ferrocene tail groups, and intervening hydrocarbon chain lengths of one, six, or 11 carbons. Two factors considered to be decisive for electron transfer were addressed: (1) physical access of the surfactant ferrocene to the reactive sites through hexagonal holes in the clay lattice by X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS) and (2) thermodynamic favorability of the overall oxidation/reduction reaction based on experimentally determined oxidation/reduction potentials. In suspensions of clay with the longer chain surfactants, (ferrocenylhexyl)trimethylammonim (FHTMA(+)) and (ferrocenylundecyl)trimethylammonium (FUTMA(+)), where electron transfer may be expected to be favored by both factors, physical accessibility, and thermodynamic favorability, ferroecene oxidation was observed by diffuse reflectance infrared spectroscopy (DRIFT), ultraviolet-visible spectroscopy (UV-vis), and visual color changes. In contrast, the shorter chain length surfactant, (ferrocenylmethyl)trimethylammonium (FMTMA(+)), did not participate in electron transfer with the clay, as substantiated by UV-vis and no visible color changes. Rigid conformation and/or higher oxidation/reduction potential than clay Fe can account for the lack of reaction. The utility and limitations of using these surfactants as model compounds is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据