4.7 Review

Structure of angiotensin I-converting enzyme

期刊

CELLULAR AND MOLECULAR LIFE SCIENCES
卷 61, 期 21, 页码 2677-2686

出版社

SPRINGER BASEL AG
DOI: 10.1007/s00018-004-4239-0

关键词

metallopeptidase; angiotensin I-converting enzyme; Drosophila angiotensin converting enzyme homologue; neurolysin; Pyrococcus furiosus carboxypeptidase; structure-based drug design

向作者/读者索取更多资源

Angiotensin-converting enzyme (ACE) is a zinc- and chloride-dependent metallopeptidase that plays a vital role in the metabolism of biologically active peptides. Until recently, much of the inhibitor design and mechanism of action of this ubiquitous enzyme was based on the structures of carboxypeptidase A and thermolysin. When compared to the recently solved structures of the testis isoform of ACE (tACE) and its Drosophila homologue (AnCE), carboxypeptidase A showed little structural homology outside of the active site, while thermolysin revealed significant but less marked overall similarity. The ellipsoid-shaped structure of tACE, which has a preponderance of alpha-helices, is characterised by a core channel that has a constriction approximately 10 Angstrom from its opening where the zinc-binding active site is located. Comparison of the native protein with the inhibitor-bound form (lisinopril-tACE) does not reveal any striking differences in the conformation of the inhibitor binding site, disfavouring an open and closed configuration. However, the inhibitor complex does provide insights into the network of hydrogen-bonding and ionic interactions in the active site as well as the mechanism of ACE substrate hydrolysis. The three-dimensional structure of ACE now paves the way for the rational design of a new generation of domain-selective ACE inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据