4.7 Article

Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways

期刊

ENVIRONMENTAL HEALTH PERSPECTIVES
卷 112, 期 15, 页码 1481-1487

出版社

US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
DOI: 10.1289/ehp.7175

关键词

environmental estrogens; ERKs; estradiol; phytoestrogens; prolactinoma cell line; rapid estrogen effects

资金

  1. NIEHS NIH HHS [R01 ES010987] Funding Source: Medline
  2. PHS HHS [010987] Funding Source: Medline

向作者/读者索取更多资源

Xenoestrogens can mimic or antagonize the activity of physiological estrogens, and the suggested mechanism of xenoestrogen action involves binding to estrogen receptors (ERs). However, the failure of various in vitro or in vivo assays to show strong genomic activity of xenoestrogens compared with estradiol (E-2) makes it difficult to explain their ability to cause abnormalities in animal (and perhaps human) reproductive functions via this pathway of steroid action. E2 has also been shown to initiate rapid intracellular signaling, such as changes in levels of intracellular calcium, cAMP, and nitric oxide, and activations of a variety of kinases, via action at the membrane. In this study, we demonstrate that several xenoestrogens can rapidly activate extracellular-regulated kinases (ERKs) in the pituitary tumor cell line GH(3)/B6/F10, which expresses high levels of the membrane receptor for ER-alpha. (mER). We tested a phytoestrogen (coumestrol), organochlorine pesticides or their metabolites (endosulfan, dieldrin, and DDE), and detergent by-products of plastics manufacturing (p-nonylphenol and bisphenol A). These xenoestrogens (except bisphenol A) produced rapid (3-30 min after application), concentration (10(-14)-10(-8) M)-dependent ERK-1/2 phosphorylation but with distinctly different activation patterns. To identify signaling pathways involved in ERK activation, we used specific inhibitors of Elks, epidermal growth factor receptors, Ca2+ signaling, Src and phosphoinositide-3 kinases, and a membrane structure disruption agent. Multiple inhibitors blocked ERK activation, suggesting simultaneous use of multiple pathways and complex signaling web interactions. However, inhibitors differentially affected each xenoestrogen response examined. These actions may help to explain the distinct abilities of xenoestrogens to disrupt reproductive functions at low concentrations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据