4.6 Article

Equivalent core-hole time-dependent density functional theory calculations of carbon 1s shake-up states of phthalocyanine -: art. no. 195214

期刊

PHYSICAL REVIEW B
卷 70, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.195214

关键词

-

向作者/读者索取更多资源

The shake-up transition energies of the carbon 1s photoelectron spectrum of metal-free phthalocyanine (H2Pc) have been calculated by means of time-dependent density functional theory, for which an equivalent core approximation is adopted. Model calculations for the C 1s shake-up states of benzene are in excellent agreement with the latest experimental results. The complex C 1s shake-up structures associated with the aromatic and pyrrole carbons in the phthalocyanine are computed, as well as their ionization potentials. They allow us to determine the origin of the anomalous intensity ratio between the pyrrole and benzene carbons in a high resolution C 1s photoelectron spectrum measured for a H2Pc film, as due to a benzene-related shake-up contribution, hidden under the pyrrole main intensity feature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据