4.7 Article

Double belt structure of discoidal high density lipoproteins: Molecular basis for size heterogeneity

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 343, 期 5, 页码 1293-1311

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2004.09.017

关键词

apolipoprotein A-I; discoidal high-density lipoprotein; size heterogeneity; double belt model; hairpin-belt model

资金

  1. NHLBI NIH HHS [P01 HL-34343] Funding Source: Medline

向作者/读者索取更多资源

We recently proposed an all-atom model for apolipoprotein (apo) A-I in discoidal high-density lipoprotein in which two monomers form stacked antiparallel helical rings rotationally aligned by interhelical salt-bridges. The model can be derived a priori from the geometry of a planar bilayer disc that constrains the hydrophobic face of a continuous amphipathic a helix in lipid-associated apoA-I to a plane inside of an a-helical torus. This constrains each apoA-I monomer to a novel conformation, that of a slightly unwound, curved, planar amphipathic alpha11/3 helix (three turns per 11 residues). Using non-denaturing gradient gel electrophoresis, we show that dimyristoylphosphocholine discs containing two apoA-I form five distinct particles with maximal Stokes diameters of 98 Angstrom (R2-1), 106 Angstrom (R2-2), 110 Angstrom (R2-3), 114 Angstrom (R2-4) and 120 Angstrom (R2-5). Further, we show that the Stokes diameters of R2-1 and R2-2 are independent of the N-terminal 43 residues (the flexible domain) of apoA-I, while the flexible domain is necessary and sufficient for the formation of the three larger complexes. On the basis of these results, the conformation of apoA-I on the R2-2 disc can be modeled accurately as an amphipathic helical double belt extending the full length of the lipid-associating domain with N and C-terminal ends in direct contact. The smallest of the discs, R2-1, models as the R2-2 conformation with an antiparallel 15-18 residue pairwise segment of helixes hinged off the disc edge. The conformations of full-length apoA-I on the flexible domain-dependent discs (R2-3, R2-4 and R2-5) model as the R2-2 conformation extended on the disc edge by one, two or three of the 11-residue tandem amphipathic helical repeats (termed G1, G2 and G3), respectively, contained within the flexible domain. Although we consider these results to favor the double belt model, the topographically very similar hairpin-belt model cannot be ruled out entirely. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据