4.8 Article

Stable kinetochore-microtubule attachment constrains centromere positioning in metaphase

期刊

CURRENT BIOLOGY
卷 14, 期 21, 页码 1962-1967

出版社

CELL PRESS
DOI: 10.1016/j.cub.2004.09.086

关键词

-

资金

  1. NIGMS NIH HHS [R37 GM024364] Funding Source: Medline

向作者/读者索取更多资源

With a single microtubule attachment, budding-yeast kinetochores provide an excellent system for understanding the coordinated linkage to dynamic microtubule plus ends for chromosome oscillation and positioning. Fluorescent tagging of kinetochore proteins indicates that, on average, all centromeres are clustered, distinctly separated from their sisters, and positioned equidistant from their respective spindle poles during metaphase. However, individual fluorescent chromosome markers near the centromere transiently reassociate with their sisters and oscillate from one spindle half to the other. To reconcile the apparent disparity between the average centromere position and individual centromere proximal markers, we utilized fluorescence recovery after photobleaching to measure stability of the histone-H3 variant Cse4p/ CENP-A. Newly synthesized Cse4p replaces old protein during DNA replication. Once assembled, Cse4-GFP is a physically stable component of centromeres during mitosis. This allowed us to follow centromere dynamics within each spindle half. Kinetochores remain stably attached to dynamic microtubules and exhibit a low incidence of switching orientation or position between the spindle halves. Switching of sister chromatid attachment may be contemporaneous with Cse4p exchange and early kinetochore assembly during S phase; this would promote mixing of chromosome attachment to each spindle pole. Once biorientation is attained, centromeres rarely make excursions beyond their proximal half spindle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据