4.5 Article

A Theoretical investigation of the shape and hydration properties of aqueous urea: Evidence for nonplanar urea geometry

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 108, 期 45, 页码 17583-17590

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0473218

关键词

-

向作者/读者索取更多资源

To model the structure of a urea molecule in aqueous solution including adaption of the solute electronic structure, we have used the reference interaction site model - self-consistent-field (RISM-SCF) method, describing the solute electronic structure at the ab initio level and hydration via an integral equation for the solvent distribution. The RISM-SCF model for aqueous urea gives a clearly nonplanar urea structure, with more than seven waters located within a contact distance defined for hydrogen bonding. The pyramidalization at the urea nitrogen sites is reduced in water relative to the gas phase, but the structure is closer to the gas phase structure than to the planar crystal structure. It is further shown that the solvent produces substantial polarization of the urea solute, with the dipole moment increasing from 4 to 7 D as the geometry and electronic structure are optimized to the aqueous environment. The overall result is to favor a high density of hydrogen bonds between urea and the surrounding solvent. The geometry obtained is intermediate between the previously known nonplanar gas phase structure and well-characterized planar crystal structure. An uncommon hemispherical shape for the electrostatic potential of around the carbonyl of urea is found, which affects the solvation structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据