4.6 Article

Processing and joining of DNA ends coordinated by interactions among Dnl4/Lif1, Pol4, and FEN-1

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 46, 页码 47580-47588

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M404492200

关键词

-

资金

  1. NIGMS NIH HHS [GM47251] Funding Source: Medline

向作者/读者索取更多资源

The repair of DNA double-strand breaks is critical for maintaining genetic stability. In the non-homologous end-joining pathway, DNA ends are brought together by end-bridging factors. However, most in vivo DNA double-strand breaks have terminal structures that cannot be directly ligated. Thus, the DNA ends are aligned using short regions of sequence microhomology followed by processing of the aligned DNA ends by DNA polymerases and nucleases to generate ligatable termini. Genetic studies in Saccharomyces cerevisiae have implicated the DNA polymerase Pol4 and the DNA structure-specific endonuclease FEN-1(Rad27) in the processing of DNA ends to be joined by Dnl4/Lif1. In this study, we demonstrated that FEN-1(Rad27) physically and functionally interacted with both Pol4 and Dnl4/Lif1 and that together these proteins coordinately processed and joined DNA molecules with incompatible 5' ends. Because Pol4 also interacts with Dnl4/Lif1, our results have revealed a series of pair-wise interactions among the factors that complete the repair of DNA double-strand breaks by non-homologous end-joining and provide a conceptual framework for delineating the end-processing reactions in higher eukaryotes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据