4.6 Article

Invertebrate data predict an early emergence of vertebrate fibrillar collagen clades and an anti-incest model

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 46, 页码 47711-47719

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M408950200

关键词

-

向作者/读者索取更多资源

Fibrillar collagens are involved in the formation of striated fibrils and are present from the first multicellular animals, sponges, to humans. Recently, a new evolutionary model for fibrillar collagens has been suggested (Boot-Handford, R. P., Tuckwell, D. S., Plumb, D. A., Farrington Rock, C., and Poulsom, R. (2003) J. Biol. Chem. 278, 31067-31077). In this model, a rare genomic event leads to the formation of the founder vertebrate fibrillar collagen gene prior to the early vertebrate genome duplications and the radiation of the vertebrate fibrillar collagen clades (A, B, and C). Here, we present the modular structure of the fibrillar collagen chains present in different invertebrates from the protostome Anopheles gambiae to the chordate Ciona intestinalis. From their modular structure and the use of a triple helix instead of C-propeptide sequences in phylogenetic analyses, we were able to show that the divergence of A and B clades arose early during evolution because alpha chains related to these clades are present in protostomes. Moreover, the event leading to the divergence of B and C clades from a founder gene arose before the appearance of vertebrates; altogether these data contradict the Boot-Handford model. Moreover, they indicate that all the key steps required for the formation of fibrils of variable structure and functionality arose step by step during invertebrate evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据