4.6 Article

Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 561, 期 1, 页码 159-168

出版社

BLACKWELL PUBLISHING LTD
DOI: 10.1113/jphysiol.2004.072330

关键词

-

资金

  1. NHLBI NIH HHS [R37 HL060025, R37 HL60025] Funding Source: Medline

向作者/读者索取更多资源

Inward rectifier K+ channels commonly exhibit long openings (slow gating) punctuated by rapid open-close transitions (fast gating), suggesting that two separate gates may control channel open-dosed transitions. Previous studies have suggested possible gate locations at the selectivity filter and at the'bundle crossing'. where the two transmembrane segments (M1 and M2) cross near the cytoplasmic end of the pore. Wild-type Kir2.1 channels exhibit only slow gating, but mutations in the cytoplasmic pore domain at E224 and E299 have been shown to induce fast flickery gating. Since these mutations also affect polyamine affinity, we conjectured that the fast gating mechanism might affect the kinetics of polyamine block/unblock if located more intracellularly than the polyamine blocking site in the pore. Neutralization of either E224 or E299 induced fast gating and slowed both block and unblock rates by the polyamine diamine 10. The slowing of polyamine block/unblock was partly relieved by raising pH from 7.2 to 9.0, which also slowed fast gating kinetics. These findings indicate that the fast flickery gate is located intraceflularly with respect to the polyamine pore-plugging site near D172, thereby excluding the selectivity filter, and implicating the bundle crossing or more intracellular site as the gate. As additional proof, fast gating induced at the selectivity filter by disrupting P loop salt bridges in WT-E138D-E138D-WT tandem had no effect on polyamine block and unblock rates. The pH sensitivity of fast gating in E224 and E299 mutants was attributed to the protonation state of H226, since the double mutant E224Q/H226K induced fast gating which was pH insensitive. Moreover, introducing a negative charge in the 224-226 region was sufficient to prevent fast gating, since the double mutant E224Q/H226E rescued wild-type Kir2.1 slow gating. These observations implicate E224 and E299 as allosteric modulators of a fast gate, located at the bundle crossing or below in Kir2.1 channels. By suppressing fast gating, these negative charges facilitate polyamine block and unblock, which may be their physiologically important role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据