4.5 Article

Activation of PPARγ is required for curcurnin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro

期刊

BIOCHEMICAL JOURNAL
卷 384, 期 -, 页码 149-157

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20040928

关键词

apoptosis; extracellular matrix; hepatic fibrosis; hepatic stellate cell; peroxisome proliferator-activated receptor gamma (PPAR gamma); phytochemical

资金

  1. NIDDK NIH HHS [DK 47995, R01 DK047995] Funding Source: Medline

向作者/读者索取更多资源

During liver fibrogenesis, quiescent HSC (hepatic stellate cells) become active, a transformation that is associated with enhanced cell proliferation and overproduction of ECM (extracellular matrix). Inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSC for the prevention and treatment of liver fibrosis. Levels of PPARgamma (peroxisome proliferator-activated receptor gamma) are dramatically diminished in parallel with HSC activation. Stimulation of PPARgamma by its agonists inhibits HSC activation in vitro and in vivo. We demonstrated recently that curcumin, the yellow pigment in curry, inhibited HSC activation in vitro, reducing cell proliferation, inducing apoptosis and inhibiting ECM gene expression. Further studies indicated that curcumin induced the gene expression of PPARgamma and stimulated its activity in activated HSC in vitro, which was required for curcumin to inhibit HSC proliferation. The aims of the present study were to evaluate the roles of PPARgamma activation in the induction of apoptosis and suppression of ECM gene expression by curcumin in activated HSC, and to elucidate the underlying mechanisms. Our results demonstrated that blocking PPARgamma activation abrogated the effects of curcumin on the induction of apoptosis and inhibition of the expression of ECM genes in activated HSC in vitro. Further experiments demonstrated that curcumin suppressed the gene expression of TGF-beta (transforming growth factor-beta) receptors and interrupted the TGF-beta signalling pathway in activated HSC, which was mediated by PPARgamma activation. Taken together, our results demonstrate that curcumin stimulated PPARgamma activity in activated HSC in vitro, which was required for curcumin to reduce cell proliferation, induce apoptosis and suppress ECM gene expression. These results provide novel insight into the mechanisms responsible for the inhibition of HSC activation by curcumin. The characteristics of curcumin, which has no adverse health effects, make it a potential candidate for prevention and treatment of hepatic fibrosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据