4.8 Review

Introduction to organic thin film transistors and design of n-channel organic semiconductors

期刊

CHEMISTRY OF MATERIALS
卷 16, 期 23, 页码 4436-4451

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm049391x

关键词

-

向作者/读者索取更多资源

The development of new organic semiconductors with improved performance in organic thin film transistors (OTFTs) is a major challenge for materials chemists. There is a particular need to develop air-stable n-channel (electron-conducting) organic semiconductors with performance comparable to that of p-channel (hole-conducting) materials, for organic electronics to realize the benefits of complementary circuit design, i.e., the ability to switch transistors with either positive or negative gate voltages. There have been significant advancements in the past five years. In terms of standard OTFT metrics such as the field effect mobility (mu(FET)) and on-to-off current ratio (I-ON/I-OFF), n-channel OTFTs have achieved performance comparable both to that of n-channel amorphous silicon TFTs and to that of the best reported p-channel (hole-conducting) OTFTs; however, issues of device stability linger. This review provides a detailed introduction to OTFTs, summarizes recent progress in the development of new n-channel organic semiconductors, and discusses the critical properties that any prospective n-channel material must have. Methods important to semiconductor design such as electronic structure calculations and synthetic structural modifications are highlighted in a case study of the development of a new n-channel material based on a terthiophene modified with electron-withdrawing groups. The review concludes with a discussion of directions for future work in this area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据