4.5 Article

Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films

期刊

JOURNAL OF PHYSICS-CONDENSED MATTER
卷 16, 期 45, 页码 S5437-S5448

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0953-8984/16/45/008

关键词

-

向作者/读者索取更多资源

In contrast to non-associating liquids such as oils or organic solvents, whose viscosity diverges when they are confined by solid surfaces to films thinner than about ten molecular diameters, recent studies reveal that salt-free water remains fluid, with a viscosity close to its bulk value, even when confined to films down to only one or two monolayers thick. For the case of high concentration aqueous salt solutions compressed down to subnanometre films between confining planar surfaces, the hydration sheaths about the ions (trapped between the oppositely charged surfaces) also remain extremely fluid: this behaviour is attributed to the tenacity of water molecules in the hydration layers together with their rapid relaxation/exchange time. Related experiments on highly compressed, polyelectrolyte brushes in aqueous media reveal a remarkable lubricity which is in large measure attributed to similar hydration layers about the charged segments: this water of hydration strongly resists being squeezed out, but at the same time it may rapidly exchange with adjacent water molecules, thereby remaining quite fluid and acting as a molecular lubricant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据