4.6 Article

cAMP-dependent protein kinase regulates ubiquitin-proteasome-mediated degradation and subcellular localization of the nuclear receptor coactivator GRIP1

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 47, 页码 49120-49130

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M409746200

关键词

-

向作者/读者索取更多资源

Nuclear receptors and their coactivators are key regulators of numerous physiological functions. GRIP1 ( glucocorticoid receptor-interacting protein) is a member of the steroid receptor coactivator family. Here, we show that GRIP1 is regulated by cAMP-dependent protein kinase (PKA) that induces its degradation through the ubiquitin-proteasome pathway. GRIP1 was downregulated in transiently transfected COS-1 cells after treatment with 8-para-chlorophenylthio-cAMP or forskolin and 3-isobutyl-1-methylxanthine and in adrenocortical Y1 cells after incubation with adrenocorticotropic hormone. Pulse-chase experiments with transiently transfected COS-1 cells demonstrated that the half-life of GRIP1 was markedly reduced in cells overexpressing the PKA catalytic subunit, suggesting that activation of PKA increases the turnover of GRIP1 protein. The proteasome inhibitors MG132 and lactacystin abolished the PKA-mediated degradation of GRIP1. Using ts20 cells, a temperature-sensitive cell line that contains a thermolabile ubiquitin-activating E1 enzyme, it was confirmed that PKA-mediated degradation of GRIP1 is dependent upon the ubiquitin-proteasome pathway. Coimmunoprecipitation studies of COS-1 cells transfected with expression vectors encoding GRIP1 and ubiquitin using anti-GRIP1 and anti-ubiquitin antibodies showed that the ubiquitination of GRIP1 was increased by overexpression of PKA. Finally, we show that PKA regulates the intracellular distribution pattern of green fluorescent protein-GRIP1 and stimulates recruitment of GRIP1 to subnuclear foci that are colocalized with the proteasome. Taken together, these data demonstrate that GRIP1 is ubiquitinated and degraded through activation of the PKA pathway. This may represent a novel regulatory mechanism whereby hormones down-regulate a nuclear receptor coactivator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据