4.7 Article

Directions of outflows, disks, magnetic fields, and rotation of young stellar objects in collapsing molecular cloud cores

期刊

ASTROPHYSICAL JOURNAL
卷 616, 期 1, 页码 266-282

出版社

IOP PUBLISHING LTD
DOI: 10.1086/424897

关键词

ISM : clouds; ISM : jets and outflows; MHD; methods : numerical; stars : formation

向作者/读者索取更多资源

The collapse of slowly rotating molecular cloud cores threaded by magnetic fields is investigated by high-resolution numerical simulation. Outflow formation in the collapsing cloud cores is also followed. In the models examined, the cloud core and parent cloud rotate rigidly and are initially threaded by a uniform magnetic field. The simulations show that the cloud core collapses along the magnetic field lines. The magnetic field in the dense region of the cloud core rotates faster than that of the parent cloud as a consequence of spin-up of the central region during the collapse. The cloud core exhibits significant precession of the rotation axis, magnetic field, and disk orientation, with precession highest in the models with low initial field strength (less than or similar to20 muG). Precession in models with initial fields of similar to 40 muG is suppressed by strong magnetic braking. Magnetic braking transfers angular momentum form the central region and acts more strongly on the component of angular momentum oriented perpendicular to the magnetic field. After the formation of an adiabatic core, outflow is ejected along the local magnetic field lines. Strong magnetic braking associated with the outflow causes the direction of angular momentum to converge with that of the local magnetic field, resulting in the convergence of the local magnetic field, angular momentum, outflow, and disk orientation by the outflow formation phase. The magnetic field of a young star is inclined at an angle of no more than 30degrees from that of the parent cloud at initial field strengths of similar to20 muG, while at an initial field strength of similar to40 muG, the magnetic field of the young star is well aligned with that of the parent cloud.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据