4.7 Article

Stress buildup in the Himalaya

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2003JB002911

关键词

seismic cycle; interseismic; microseismicity; geodesy; Himalaya; Nepal

向作者/读者索取更多资源

The seismic cycle on a major fault involves long periods of elastic strain and stress accumulation, driven by aseismic ductile deformation at depth, ultimately released by sudden fault slip events. Coseismic slip distributions are generally heterogeneous with most of the energy being released in the rupture of asperities. Since, on the long term, the fault's walls generally do not accumulate any significant permanent deformation, interseismic deformation might be heterogeneous, revealing zones of focused stress buildup. The pattern of current deformation along the Himalayan arc, which is known to produce recurring devastating earthquakes, and where several seismic gaps have long been recognized, might accordingly show significant lateral variations, providing a possible explanation for the uneven microseismic activity along the Himalayan arc. By contrast, the geodetic measurements show a rather uniform pattern of interseismic strain, oriented consistently with long-term geological deformation, as indicated from stretching lineation. We show that the geodetic data and seismicity distribution are reconciled from a model in which microseismicity is interpreted as driven by stress buildup increase in the interseismic period. The uneven seismicity pattern is shown to reflect the impact of the topography on the stress field, indicating low deviatoric stresses (<35 MPa) and a low friction (<0.3) on the Main Himalayan Thrust. Arc-normal thrusting along the Himalayan front and east-west extension in southern Tibet are quantitatively reconciled by the model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据