4.6 Article

Bounds for element size in a variable stiffness cohesive finite element model

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/nme.1138

关键词

cohesive finite element method; element size; dynamic fracture; ceramic composite

向作者/读者索取更多资源

The cohesive finite element method (CFEM) allows explicit modelling of fracture processes. One form of CFEM models integrates cohesive surfaces along all finite element boundaries, facilitating the explicit resolution of arbitrary fracture paths and fracture patterns. This framework also permits explicit account of arbitrary microstructures with multiple length scales, allowing the effects of material heterogeneity, phase morphology, phase size and phase distribution to be quantified. However, use of this form of CFEM with cohesive traction-separation laws with finite initial stiffness imposes two competing requirements on the finite element size. On one hand, an upper bound is needed to ensure that fields within crack-tip cohesive zones are accurately described. On the other hand, a lower bound is also required to ensure that the discrete model closely approximates the physical problem at hand. Both issues are analysed in this paper within the context of fracture in multi-phase composite microstructures and a variable stiffness bilinear cohesive model. The resulting criterion for solution convergence is given for meshes with uniform, cross-triangle elements. A series of calculations is carried out to illustrate the issues discussed and to verify the criterion given. These simulations concern dynamic crack growth in an Al(2)O(3) ceramic and in an Al(2)O(3)/TiB(2) ceramic composite whose phases are modelled as being hyperelastic in constitutive behaviour. Copyright (C) 2004 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据