4.5 Article

Differentiation of the dopaminergic phenotype in the olfactory system of neonatal and adult mice

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 479, 期 4, 页码 389-398

出版社

WILEY
DOI: 10.1002/cne.20320

关键词

olfactory bulb; tyrosine hydroxylase; odor deprivation; rostral migratory stream; adult neurogenesis; subventricular zone

资金

  1. NIA NIH HHS [AG09686] Funding Source: Medline

向作者/读者索取更多资源

Olfactory bulb (OB) interneurons are derived primarily postnatally from progenitors in the anterior subventricular zone (SVZa) and migrate to the OB in the rostral migratory stream (RMS). Progenitors differentiate into phenotypically diverse granule and periglomerular cells by as yet undefined mechanisms. To visualize spatiotemporal aspects of periglomerular dopamine (DA) neuron differentiation, two independently derived transgenic mouse lines were analyzed with a 9-kb tyrosine hydroxylase (TH) promoter to drive either a LacZ or an enhanced green fluorescent protein (EGFP) reporter gene. Both reporters showed similar neonatal expression that varied from low levels in RMS, to moderate in the superficial granule cell layer, to strong in relatively large cells, possibly external tufted cells, in the periglomerular region. TH mRNA and protein were not detected in the RMS but were colocalized with the transgenes in neonatal superficial granule and periglomerular cells. By comparison, TH protein in adults was further limited to periglomerular cells. To demonstrate that transcriptional regulation was the same for EGFP and TH, expression was shown to decline similarly in the OB ipsilateral to odor deprivation produced by adult unilateral naris closure. Of two genes previously hypothesized to regulate OB DA expression, only regulated expression of the orphan receptor Nurr1, but not the homeobox-containing genes Dlx-1 and -2, was consistent with a role in regulation of the DA phenotype. These data demonstrate for the first time that DA phenotypic differentiation in neonates begins with low-level transcription in migrating progenitors in the RMS and culminates with activity-dependent protein expression in periglomerular cells innervated by olfactory receptor cells. J. Comp. Neurol. 479:389-398, 2004. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据