4.8 Article

Preparation and characterization of π-stacking quinodimethane oligothiophenes.: Predicting semiconductor behavior and bandwidths from crystal structures and molecular orbital calculations

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 126, 期 46, 页码 15295-15308

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0484597

关键词

-

向作者/读者索取更多资源

A series of new quinodimethane-substituted terthiophene and quaterthiophene oligomers has been investigated for comparison with a previously studied quinoid oligothiophene that has demonstrated high mobilities and ambipolar transport behavior in thin-film transistor devices. Each new quinoidal thiophene derivative shows a reversible one-electron oxidation between 0.85 and 1.32 V, a quasi-reversible one-electron second oxidation between 1.37 and 1.96 V, and a reversible two-electron reduction between -0.05 and -0.23 V. The solution UV-vis-NIR spectrum of each compound is dominated by an intense (epsilon congruent to 100 000 M-1 cm(-1)) low energy pi-pi transition that has lambda(max) ranging between 648 and 790 mm. All X-ray crystal structures exhibit very planar quinoidal backbones and short intermolecular pi-stacking distances (3.335-3.492 Angstrom). Structures exhibit a single pi-stacking distance with parallel cofacial stacking (sulfur atoms of equivalent rings pointed in the same direction) or with alternating distances and antiparallel cofacial stacking (sulfur atoms of equivalent rings pointed in the opposite direction). Examples of the layered and herringbone-packing motifs are observed for both the parallel and the antiparallel cofacial stacking. Analysis of the X-ray structures and molecular orbital calculations indicates that all of these compounds have one-dimensional electronic band structures as a result of the pi-stacking. For structures with a unique pi-stacking distance, a simple geometric overlap parameter calculated from the shape of the molecule and the slip from perfect registry in the pi-stack correlates well with the transfer integrals (t) calculated using molecular orbital theory. The calculated valence (633 meV) and conduction (834 meV) bandwidths for a quinoid quaterthiophene structure are similar to those calculated for the benchmark pentacene and indicate that both hole and electron mobilities could be significant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据