3.8 Article

Hippocampal neurons and recombinant galectins as tools for systematic carbohydrate structure-function studies in neuronal differentiation

期刊

DEVELOPMENTAL BRAIN RESEARCH
卷 153, 期 2, 页码 189-196

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.devbrainres.2004.08.005

关键词

axonal growth; axonal regeneration; neuritogenesis; galectin; protein-carbohydrate interaction, sugar code

向作者/读者索取更多资源

Membrane glycoconjugates play a central role in neuronal interactions and regulation. To define the precise links between membrane polysaccharides and neuronal functions, two main requirements must be fulfilled: (1) the availability of molecular tools able to finely discriminate among carbohydrate structures and (2) the use of an experimental system suitable for systematic and quantitative studies of particular neuronal processes. In this work, we used two chicken proto-type galectins, i.e., monomeric CG-14 and dimeric CG-16, with very similar carbohydrate affinities, and rat hippocampal neurons in culture to quantitatively measure the involvement of carbohydrate protein interaction in axonal growth and directionality, neurite sprouting and axon regenerative capacity after section. CG-16 potently stimulated axonal growth and guidance. Neurite sprouting was enhanced by immobilized CG-16 and, notably, reduced by lectin in solution. Overall, cross-linking CG-16 invariably excelled CG-14 in these functional assays, although none of them were able to improve axon regenerative capacity when compared to mammalian galectin-1. Our results demonstrate the potential of the experimental set-up to perform a systematic study of galectin functionality in neuronal differentiation. In view of the concept of the sugar code, the presented results indicate that biological effects triggered by glycan binding engaging an endogenous lectin can be modulated by carbohydrate affinity and/or by other factors like differential cross-linking capacity. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据