4.5 Article

Structure and catalytic properties of Pt-modified hyper-cross-linked polystyrene exhibiting hierarchical porosity

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 108, 期 47, 页码 18234-18242

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp046459n

关键词

-

向作者/读者索取更多资源

The structural transformation and catalytic properties of metal/polymer nanocomposites derived from hypercross-linked polystyrene (HPS) exhibiting both microporosity and macroporosity, and filled with Pt nanoparticles, are investigated in the direct oxidation Of L-sorbose to 2-keto-L-gulonic acid. Transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, anomalous small-angle X-ray scattering, and catalytic studies suggest that the catalytically active species, nanoparticles of mixed composition with a mean diameter of 1.6 nm, develop after the initial induction period. At the highest selectivity (96.8%) at 100% L-sorbose conversion, the catalytic activity is measured to be 2.5 x 10(-3) mol/mol Pt-s, which corresponds to a 4.6-fold increase in activity relative to the Pt-modified microporous HPS previously reported. This substantial increase in catalytic activity is attributed to the presence of macropores, which facilitate mass transport and, consequently, accessibility of the nanoparticle surface for reactants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据