4.7 Article

Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 344, 期 3, 页码 813-826

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2004.09.055

关键词

molecular chaperone; Hsp90; heat shock; protein folding; geldanamycin

向作者/读者索取更多资源

The ATPase activity of the molecular chaperone Hsp90 is essential for its function in the assembly of client proteins. To understand the mechanism of human Hsp90, we have carried out a detailed kinetic analysis of ATP binding, hydrolysis and product release. ATP binds rapidly in a two-step process involving the formation of a diffusion-collision complex followed by a conformational change. The rate-determining step was shown to be ATP hydrolysis and not subsequent ADP dissociation. There was no evidence from any of the biophysical measurements for cooperativity in either nucleotide binding or hydrolysis for the dimeric protein. A monomeric fragment, lacking the C-terminal dimerisation domain, showed no dependence on protein concentration and, therefore, subunit association for activity. The thermodynamic linkage between client protein binding and nucleotide affinity revealed ATP bound Hsp90 has a higher affinity for client proteins than the ADP bound form. The kinetics are consistent with independent Michaelis-Menten catalysis in each subunit of the Hsp90 dimer. We propose that Hsp90 functions in an open-ring configuration for client protein activation. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据