4.6 Article

Transcriptional induction of FosB/ΔFosB gene by mechanical stress in osteoblasts

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 48, 页码 49795-49803

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M404096200

关键词

-

向作者/读者索取更多资源

Mechanical stress to bone plays a critical role in maintaining bone mass and strength. However, the molecular mechanism of mechanical stress-induced bone formation is not fully understood. In the present study, we demonstrate that FosB and its spliced variant DeltaFosB, which is known to increase bone mass by stimulating bone formation in vivo, is rapidly induced by mechanical loading in mouse hind limb bone in vivo and by fluid shear stress (FSS) in mouse calvarial osteoblasts in vitro both at the mRNA and protein levels. FSS induction of FosB/DeltaFosB gene expression was dependent on gadlinium-sensitive Ca2+ influx and subsequent activation of ERK1/2. Analysis of the mouse FosB/DeltaFosB gene upstream regulatory region with luciferase reporter gene assays revealed that the FosB/DeltaFosB induction by FSS occurred at the transcriptional level and was conferred by a short fragment from -603 to -327. DNA precipitation assays and DNA decoy experiments indicated that ERK-dependent activation of CREB binding to a CRE/AP-1 like element (designated CRE2) at the position of -413 largely contributed to the transcriptional effects of FSS. These results suggest that DeltaFosB participates in mechanical stress-induced intracellular signaling cascades that activate the osteogenic program in osteoblasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据