4.6 Article

Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia -: art. no. 245116

期刊

PHYSICAL REVIEW B
卷 70, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.245116

关键词

-

向作者/读者索取更多资源

The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2), to a mixing of these symmetries (monoclinic phase, m-ZrO2). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p (N-2,N-3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2 eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8 eV gaps determined by vacuum ultraviolet spectroscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据