4.6 Article

Scaling in the emergent behavior of heavy-electron materials

期刊

PHYSICAL REVIEW B
卷 70, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.70.235117

关键词

-

向作者/读者索取更多资源

We show that the NMR Knight shift anomaly exhibited by a large number of heavy electron materials can be understood in terms of the different hyperfine couplings of probe nuclei to localized spins and to conduction electrons. The onset of the anomaly is at a temperature T-*, below which an itinerant component of the magnetic susceptibility develops. This second component characterizes the polarization of the conduction electrons by the local moments and is a signature of the emerging heavy electron state. The heavy electron component grows as log T below T-*, and scales universally for all measured Ce, Yb and U based materials. Our results suggest that T-* is not related to the single ion Kondo temperature, T-K, but rather represents a correlated Kondo temperature that provides a measure of the strength of the intersite coupling between the local moments. Our analysis strongly supports the two-fluid description of heavy electron materials developed by Nakatsuji, Pines and Fisk.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据