4.7 Article

Optical spectra and localization of excitons in inhomogeneous helical cylindrical aggregates

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 121, 期 21, 页码 10687-10698

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1807825

关键词

-

向作者/读者索取更多资源

We study the linear optical properties of helical cylindrical molecular aggregates accounting for the effects of static diagonal disorder. Absorption, linear dichroism, and circular dichroism spectra are presented, calculated using brute force numerical simulations and a modified version of the coherent potential approximation that accounts for finite size effects by using the appropriate open boundary conditions. Excellent agreement between both approaches is found. It is also shown that the inclusion of disorder results in a better agreement between calculated and measured spectra for the chlorosomes of green bacteria as compared to our previous report, where we restricted ourselves to homogeneous cylinders [Didraga, Klugkist, and Knoester, J. Phys. Chem. B 106, 11474 (2002)]. For the excitons that govern the optical response, we also investigate the disorder-induced localization properties. By analyzing an autocorrelation function of the exciton wave function, we find a strongly anisotropic localization behavior, closely following the properties of chiral wave functions which previously have been found for homogenoeus helical cylinders [Didraga and Knoester, J. Chem. Phys. 121, 946 (2004)]. It is shown that the circular dichroism spectrum may still show a strong dependence on the cylinder length, even when the exciton wave function is localized in a region small compared to the cylinder's size. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据