4.5 Article

Distilling common randomness from bipartite quantum states

期刊

IEEE TRANSACTIONS ON INFORMATION THEORY
卷 50, 期 12, 页码 3183-3196

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIT.2004.838115

关键词

additivity; common randomness; quantum theory; tradeoff

向作者/读者索取更多资源

The problem of converting noisy quantum correlations between two parties into noiseless classical ones using a limited amount of one-way classical communication is addressed. A single-letter formula for the optimal tradeoff between the extracted common randomness and classical communication rate is obtained for the special case of classical-quantum correlations. The resulting curve is intimately related to the quantum compression with classical side information tradeoff curve Q(*)(R) of Hayden, Jozsa, and Winter. For a general initial state, we obtain a similar result, with a single-letter formula, when we impose a tensor product restriction on the measurements performed by the sender; without this restriction, the tradeoff is given by the regularization of this function. Of particular interest is a quantity we call distillable common randomness of a state: the maximum overhead of the common randomness over the one-way classical communication if the latter is unbounded. It is an operational measure of (total) correlation in a quantum state. For classical-quantum correlations it is given by the Holevo mutual information of its associated ensemble; for pure states it is the entropy of entanglement. In general, it is given by an optimization problem over measurements and regularization; for the case of separable states we show that this can be singleletterized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据