4.7 Article

Preventing alternans-induced spiral wave breakup in cardiac tissue: An ion-channel-based approach

期刊

PHYSICAL REVIEW E
卷 70, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.70.061903

关键词

-

向作者/读者索取更多资源

The detailed processes involved in spiral wave breakup, believed to be one major mechanism by which tachycardia evolves into fibrillation, are still poorly understood. This has rendered difficult the proper design of an efficient and practical control stimulus protocol to eliminate such events. In order to gain new insights into the underlying electrophysiological and dynamical mechanisms of breakup, we applied linear perturbation theory to a steadily rotating spiral wave in two spatial dimensions. The tissue was composed of cells modeled using the Fenton-Karma equations whose parameters were chosen to emphasize alternans as a primary mechanism for breakup. Along with one meandering mode, not just one but several unstable alternans modes were found with differing growth rates, frequencies, and spatial structures. As the conductance of the fast inward current was increased, the instability of the modes increased, consistent with increased meandering and propensity for spiral breakup in simulations. We also explored a promising new approach, based on the theory, for the design of an energy efficient electrical stimulus protocol to control spiral wave breakup. The novelty lies in addressing the problem directly at the ion channel level and taking advantage of the inherent two dimensional nature of the rotating wave. With the help of the eigenmode method, we were able to calculate the exact timing and amplitude of the stimulus, and locate it optimally to maximize efficiency. The analysis led to a special-case example that demonstrated that a single, properly timed stimulus can have a global effect, suppressing all growing alternans modes over the entire tissue, thus inhibiting spiral wave breakup.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据